Xiang Zhong 1,2Chao Gao 1,2Hui Li 1,2Yuening He 1,2[ ... ]Tingting Yu 1,2,*
Author Affiliations
Abstract
1 Britton Chance Center for Biomedical Photonics – MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
2 Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
3 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
4 State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
5 Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, P. R. China
Three-dimensional (3D) cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models. The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness. While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D, they often have limitations, such as being too harsh for fragile 3D cell cultures, requiring complex handling protocols, or inducing tissue deformation with shrinkage or expansion. To address this issue, we proposed a modified optical clearing method for 3D cell cultures, called MACS-W, which is simple, highly efficient, and morphology-preserving. In our evaluation of MACS-W, we found that it exhibits excellent clearing capability in just 10min, with minimal deformation, and helps drug evaluation on tumor spheroids. In summary, MACS-W is a fast, minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.
Tissue optical clearing 3D cell cultures imaging 
Journal of Innovative Optical Health Sciences
2024, 17(2): 2350018
党竑 1,2马彬 1,3高超 1,3祖文龙 1,3[ ... ]沈平 2,4
作者单位
摘要
1 南京航空航天大学自动化学院,江苏 南京 211106
2 南方科技大学电子与电气工程系,广东 深圳 518055
3 高速载运设施的无损检测监控技术工信部重点实验室,江苏 南京 211106
4 鹏城实验室,广东 深圳 518055
5 智能光传感与调控技术教育部重点实验室,江苏 南京 210023
针对光频域反射(OFDR)分布式光纤传感在长距离、大量程应用场景中,参考光谱与测量光谱间的相似度(SD)退化及由此造成的鲁棒性下降的问题,本文研究了可调谐激光光源调谐非线性补偿模型,发现补偿的残余误差会引起传感单元产生随机位置偏差(PoD)。基于对PoD的统计学分析,建立了参考和测量光谱间SD的评价体系,并提出一种基于卡尔曼预测和局部寻优的传感单元随机PoD补偿方法,实现了参考和测量光谱位置的高效、精准匹配。本文所提方法能够在50 m的传感光纤上以5 mm的空间分辨率实现大量程传感(最高温度~450 ℃,最大应变~10000 με),且兼顾高鲁棒性和高速度(计算量可降低到原来的5.8%~28.6%)。这些优点使该方法能够广泛应用于现有的光频域反射分布式光纤传感系统。
光纤传感器 分布式传感 光频域反射计 卡尔曼预测 
光学学报
2024, 44(1): 0106016
Hairui Bai 1Ruijie Ma 4,*Wenyan Su 5,9,**Top Archie Dela Peña 6,7[ ... ]Wei Ma 1,******
Author Affiliations
Abstract
1 State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
2 Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, People’s Republic of China
3 Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, People’s Republic of China
4 Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, 999077 Hong Kong, People’s Republic of China
5 School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, People’s Republic of China
6 Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077 Hong Kong, People’s Republic of China
7 Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha Guangzhou, People’s Republic of China
8 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
9 Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
10 Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, People’s Republic of China
11 Xi’an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, People’s Republic of China
Power-conversion-efficiencies (PCEs) of organic solar cells (OSCs) in laboratory, normally processed by spin-coating technology with toxic halogenated solvents, have reached over 19%. However, there is usually a marked PCE drop when the blade-coating and/or green-solvents toward large-scale printing are used instead, which hampers the practical development of OSCs. Here, a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused end-group. Thanks to the N-alkyl engineering, NIR-absorbing YR-SeNF series show different crystallinity, packing patterns, and miscibility with polymeric donor. The studies exhibit that the molecular packing, crystallinity, and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains, providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YR-SeNF-based OSCs. As a result, a record-high PCE approaching 19% is achieved in the blade-coating OSCs fabricated from a green-solvent o-xylene with high-boiling point. Notably, ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep > 80% of the initial PCEs for even over 400 h. Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs, which paves a way for industrial development.
Nano-Micro Letters
2023, 15(1): 241
Author Affiliations
Abstract
1 MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People’s Republic of China
2 Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People’s Republic of China
3 State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People’s Republic of China
4 Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
Nano-Micro Letters
2023, 15(1): 224
作者单位
摘要
长春理工大学物理学院,吉林 长春 130022
针对计算鬼成像采样过程中由于外界影响而出现的物体信息缺失问题,将小波分析应用于计算鬼成像系统中,同时在此系统中引入图像融合方法,构建一种基于图像融合的计算鬼成像系统,对此问题进行了仿真模拟与实验研究。并对结果进行了分析,结果显示此系统可以有效恢复待测物体信息、提高成像质量,相较于传统的计算鬼成像系统更加适用于实际应用环境。
鬼成像 小波分析 信息恢复 图像融合 成像系统 
激光与光电子学进展
2023, 60(20): 2011001
Xinyu Liu 1Shaoxiong Wu 1,2Xiaoxue Cao 1,3Feng Tian 1,2[ ... ]Yang Xu 1,2,6,*
Author Affiliations
Abstract
1 School of Micro-Nano Electronics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
2 ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China
3 Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
4 e-mail: l-peng@zju.edu.cn
5 e-mail: huanhu@intl.zju.edu.cn
6 e-mail: yangxu-isee@zju.edu.cn
Graphene-based photodetectors have attracted much attention due to their unique properties, such as high-speed and wide-band detection capability. However, they suffer from very low external quantum efficiency in the infrared (IR) region and lack spectral selectivity. Here, we construct a plasmon-enhanced macro-assembled graphene nanofilm (nMAG) based dual-band infrared silicon photodetector. The Au plasmonic nanostructures improve the absorption of long-wavelength photons with energy levels below the Schottky barrier (between metal and Si) and enhance the interface transport of electrons. Combined with the strong photo-thermionic emission (PTI) effect of nMAG, the nMAG–Au–Si heterojunctions show strong dual-band detection capability with responsivities of 52.9 mA/W at 1342 nm and 10.72 mA/W at 1850 nm, outperforming IR detectors without plasmonic nanostructures by 58–4562 times. The synergy between plasmon–exciton resonance enhancement and the PTI effect opens a new avenue for invisible light detection.
Photonics Research
2023, 11(10): 1657
高超 1,2翁剑宇 1,2曹晓昱 1,2张斌 1,2雷兵 1,2,*
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
空间调制型偏振检测技术是利用微偏振片阵列、角向或径向偏振片、涡旋波片等器件对光强分布进行空间调制以实现偏振信息测量的一种技术,具有光路结构简单、稳定性好、测量速度快、精度高等优势,在目标探测识别、工业及生化检测等领域具有重要应用。首先,对各种空间调制型Stokes矢量和Mueller矩阵偏振检测技术的工作原理、技术特点进行综述分析;然后,对近年来发展迅速的基于涡旋波片的空间调制型偏振检测技术进行详细阐述,重点对基于涡旋半波片和1/4波片的Stokes偏振仪、基于双涡旋波片的Mueller矩阵偏振仪的工作原理、检测效果和误差校准等内容进行介绍;最后,对空间调制型偏振检测技术的主要发展趋势进行展望。
偏振检测 空间调制 Stokes矢量 Mueller矩阵 涡旋波片 
光学学报
2023, 43(17): 1712004
作者单位
摘要
1 中国科学院微电子研究所光电技术研发中心,北京 100094
2 中国科学院大学,北京 100049
3 常州大学机械与轨道交通学院,江苏 常州 213164
为提高偏振调制激光测距方法精度,针对采样信号存在波形变形问题,提出了基于改进移动最小二乘(IMLS)算法的偏振调制激光测距方法。首先,基于偏振调制测距原理分析了调制信号波形变形产生的原因和频率解算准确度对测距精度的影响;然后,提出了基于IMLS算法的偏振调制激光测距算法,搭建了偏振调制激光测距系统;最后,分析和验证了IMLS算法的权函数、影响半径等参数对测距精度的影响,并对所提算法、摇摆法、最小二乘法进行了测距精度对比分析和验证。实验结果表明:在11.94 m的被测距离下,选用正态加权函数作为权函数,形状参数为3,影响半径为500 kHz时,基于IMLS算法的偏振调制激光测距算法的误差最小,仅为0.111 mm,此方法的测距精度优于摇摆法和最小二乘法。基于IMLS算法的测距方法适用于偏振调制测距系统,可有效提升测距精度。
测量 激光测距 偏振调制 改进移动最小二乘法 极值检测 
中国激光
2023, 50(14): 1404003
作者单位
摘要
1 中国辐射防护研究院 太原 030006
2 大亚湾核电运营管理有限责任公司 深圳 518028
放射性废油是核电机组运行产生的有机“疑难废物”之一,针对该类废物开发了基于氧化老化法的核素分离净化处理工艺,研制一套放射性废油核素分离净化处理工程装置并实现了工程应用。结果表明:氧化老化工艺去污系数可达两个量级以上;使用工程装置处理后的废油达到清洁解控水平,可作为普通危险废物进行管理;处理后废油焚烧供热过程(包括运输)中可能造成的额外附加剂量远远低于剂量限值,满足再利用过程的剂量准则,符合废物最小化原则。
核电厂 放射性废油 核素分离 工程应用 Nuclear power plant Radioactive oil Nuclide separation Engineering application 
核技术
2023, 46(1): 010002
作者单位
摘要
北京工商大学人工智能学院, 北京 100048
为了实现兰州百合关键营养物质蛋白质和多糖的快速无损检测, 在12 000~4 000 cm-1光谱范围内采集了59份兰州百合粉的近红外光谱(NIRS)。 首先运用SG、 Normalize、 SNV、 MSC、 Detrend、 OSC、 SG+1D、 SG+Normalize、 SG+SNV和SG+Detrend十种预处理方法对原始光谱数据进行处理, 确定蛋白质的最佳预处理方法为SG+Detrend、 多糖的最佳预处理方法为Detrend; 然后运用CARS、 SPA和PCA三种算法对预处理的光谱数据进行特征波长筛选, 确定蛋白质和多糖的最佳特征波长提取方法均为SPA算法; 最后采用PLSR法建立了兰州百合关键营养物质蛋白质和多糖含量的预测模型, 结果显示, 经过SG+Detrend_SPA处理所建立的蛋白质PLSR模型中, 预测集相关系数Rp为0.810 6, 预测集均方根误差RMSEP为1.195 3; 经过Detrend_SPA处理所建立的多糖PLSR模型中, 预测集相关系数Rp为0.810 9, 预测集均方根误差RMSEP为2.0946。 考虑到经典PLSR无损预测模型精度的限制, 在该研究中提出SOM-RBF神经网络无损预测模型。 首先利用SOM网络对数据样本进行聚类, 然后将得到的聚类类别数和聚类中心作为RBF网络的隐层节点个数和隐层节点数据中心, 以此来优化RBF的结构参数。 在建立的蛋白质SOM-RBF神经网络模型中, 预测集相关系数Rp为0.866 6, 预测集均方根误差RMSEP为1.038 5; 建立的多糖SOM-RBF神经网络模型中, 预测集相关系数Rp为0.868 1, 预测集均方根误差RMSEP为1.799 4。 比较PLSR和SOM-RBF两种模型对两种物质的预测结果, 确定了SOM-RBF神经网络模型为最优建模方法, 最终确定在蛋白质检测中, 最优模型为基于SG+Detrend_SPA_SOM-RBF建立的模型, 模型的预测集相关系数较PLSR高5.6%, 预测集均方根误差较PLSR低0.156 8; 在多糖检测中, 确定的最优模型为基于Detrend_SPA_SOM-RBF建立的模型, 模型的预测集相关系数较PLSR高5.72%, 预测集均方根误差较PLSR低0.295 2。 研究结果表明, 运用NIR和SOM-RBF技术可以实现对兰州百合关键营养物质蛋白质和多糖的快速无损检测, 为今后快速无损检测兰州百合营养物质提供理论依据。
兰州百合 蛋白质 多糖 近红外光谱 无损检测 SOM-RBF神经网络 Lanzhou lily Protein Polysaccharide Near infrared spectroscopy Nondestructive testing SOM-RBF neural network 
光谱学与光谱分析
2022, 42(7): 2025

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!